PDD-ET: Parkinson’s Disease Detection Using ML Ensemble Techniques and Customized Big Dataset

Author:

Chatterjee Kalyan1ORCID,Kumar Ramagiri Praveen1,Bandyopadhyay Anjan2ORCID,Swain Sujata2ORCID,Mallik Saurav34ORCID,Li Aimin5,Ray Kanad678

Affiliation:

1. Department of Computer Science & Engineering, Nalla Malla Reddy Engineering College, Hyderabad 500088, India

2. School of Computer Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India

3. Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA 02115, USA

4. Department of Pharmacology & Toxicology, The University of Arizona, Tucson, MA 85721, USA

5. School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China

6. Amity School of Applied Sciences, Amity University Rajasthan, Jaipur 303002, India

7. Facultad de CienciasFisico-Matematicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y AV. 18 sur, Col. San Manuel Ciudad Universitaria, Pueble Pue 72570, Mexico

8. Faubert Lab, Ecole d’optométrie, Université de Montréal, Montréal, QC H3T1P1, Canada

Abstract

Parkinson’s disease (PD) is a neurological disorder affecting the nerve cells. PD gives rise to various neurological conditions, including gradual reduction in movement speed, tremors, limb stiffness, and alterations in walking patterns. Identifying Parkinson’s disease in its initial phases is crucial to preserving the well-being of those afflicted. However, accurately identifying PD in its early phases is intricate due to the aging population. Therefore, in this paper, we harnessed machine learning-based ensemble methodologies and focused on the premotor stage of PD to create a precise and reliable early-stage PD detection model named PDD-ET. We compiled a tailored, extensive dataset encompassing patient mobility, medication habits, prior medical history, rigidity, gender, and age group. The PDD-ET model amalgamates the outcomes of various ML techniques, resulting in an impressive 97.52% accuracy in early-stage PD detection. Furthermore, the PDD-ET model effectively distinguishes between multiple stages of PD and accurately categorizes the severity levels of patients affected by PD. The evaluation findings demonstrate that the PDD-ET model outperforms the SVR, CNN, Stacked LSTM, LSTM, GRU, Alex Net, [Decision Tree, RF, and SVR], Deep Neural Network, HOG, Quantum ReLU Activator, Improved KNN, Adaptive Boosting, RF, and Deep Learning Model techniques by the approximate margins of 37%, 30%, 20%, 27%, 25%, 18%, 19%, 27%, 25%, 23%, 45%, 40%, 42%, and 16%, respectively.

Publisher

MDPI AG

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3