Exploring Data-Driven Components of Socially Intelligent AI through Cooperative Game Paradigms

Author:

Bennett CaseyORCID,Weiss Benjamin,Suh Jaeyoung,Yoon Eunseo,Jeong Jihong,Chae Yejin

Abstract

The development of new approaches for creating more “life-like” artificial intelligence (AI) capable of natural social interaction is of interest to a number of scientific fields, from virtual reality to human–robot interaction to natural language speech systems. Yet how such “Social AI” agents might be manifested remains an open question. Previous research has shown that both behavioral factors related to the artificial agent itself as well as contextual factors beyond the agent (i.e., interaction context) play a critical role in how people perceive interactions with interactive technology. As such, there is a need for customizable agents and customizable environments that allow us to explore both sides in a simultaneous manner. To that end, we describe here the development of a cooperative game environment and Social AI using a data-driven approach, which allows us to simultaneously manipulate different components of the social interaction (both behavioral and contextual). We conducted multiple human–human and human–AI interaction experiments to better understand the components necessary for creation of a Social AI virtual avatar capable of autonomously speaking and interacting with humans in multiple languages during cooperative gameplay (in this case, a social survival video game) in context-relevant ways.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Neuroscience (miscellaneous)

Reference63 articles.

1. The grounding problem in conversations with and through computers;Brennan,1991

2. How we talk;Enfield,2017

3. Speech pause patterns in collaborative dialogs;Koutsombogera,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3