Abstract
Indoor environmental quality (IEQ) has a high-level of impact on one’s health and productivity. It is widely accepted that IEQ is composed of four categories: thermal comfort, indoor air quality (IAQ), visual comfort, and acoustic comfort. The main physical parameters that primarily represent these comfort categories can be monitored using sensors. To this purpose, the article proposes a wireless indoor environmental quality logger. In the literature, global comfort indices are often assessed objectively (using sensors) or subjectively (through surveys). This study adopts an integrated approach that calculates a predicted indoor global comfort index (P-IGCI) using sensor data and estimates a real perceived indoor global comfort index (RP-IGCI) based on questionnaires. Among the 19 different tested algorithms, the stepwise multiple linear regression model minimized the distance between the two comfort indices. In the case study involving a university classroom setting—thermal comfort and indoor air quality were identified as the most relevant IEQ elements from a subjective point of view. The model also confirms this findings from an objective perspective since temperature and CO2 merge as the measured physical parameters with the most impacts on overall comfort.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献