A Framework for Off-Line Operation of Smart and Traditional Devices of IoT Services

Author:

Wu Chung-Yen,Huang Kuo-Hsuan

Abstract

Recently, with the continuous evolution of information technology, various products such as Building Information, Internet of Things (IoT), Big Data, Cloud Computing and Machine Learning have been developed and have created a lifestyle change. A smart Internet of Things (IoT) system is formed by combining the communication capabilities of the internet with control, monitoring and identification services to integrate people, things and objects. However, in some IoT environments that have a weak signal, such as remote areas, warehouses or basements, the network may become unstable, meaning that the IoT system is unable to provide efficient services. This paper therefore presents a framework that ensures the reliability of IoT system services so that even if the IoT system cannot connect to the network, the system can provide the services offline. To avoid increasing the installation cost or replacing existing traditional devices with modern smart devices, this framework can also be used to control traditional devices. The system operation is convenient because users can operate all their smart and traditional devices under the IoT system through voice commands and/or a handheld microcontroller, thus reducing the manual operation of the user. The framework proposed in this paper can be applied to various smart scenarios, including smart warehouses, smart restaurants, smart homes, smart farms and smart factories, to improve people’s quality of life and convenience, and create a humane and comfortable smart living environment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3