Affiliation:
1. College of Agronomy, Northwest A&F University, Yangling 712100, China
Abstract
The frequency and extent of transgene-mediated cosuppression varies substantially among plant genes. However, the underlying mechanisms leading to strong cosuppression have received little attention. In previous studies, we showed that the expression of FAD2 in the seeds of Arabidopsis results in strong RDR6-mediated cosuppression, where both endogenous and transgenic FAD2 were silenced. Here, the FAD2 strong cosuppression system was quantitatively investigated to identify the genetic factors by the expression of FAD2 in their mutants. The involvement of DCL2, DCL4, AGO1, and EIN5 was first confirmed in FAD2 cosuppression. SKI2, a remover of 3′ end aberrant RNAs, was newly identified as being involved in the cosuppression, while DCL3 was identified as antagonistic to DCL2 and DCL3. FAD2 cosuppression was markedly reduced in dcl2, dcl4, and ago1. The existence of an RDR6-independent cosuppression was revealed for the first time, which was demonstrated by weak gene silencing in rdr6 ein5 ski2. Further investigation of FAD2 cosuppression may unveil unknown genetic factor(s).
Funder
National Natural Science Foundation of China
Key International Cooperation Project of Shaanxi Province
Yang Ling Seed Industry Innovation Center
Guangdong Basic and Applied Basic Research Foundation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis