Characterization System for Heat-Energy to Electric-Energy Conversion from Concrete by Means of a Thermoelectric Module

Author:

Félix-Herrán Luis C.ORCID,García-Juárez AlejandroORCID,García-Delgado Luis ArturoORCID,González-Aguayo Pablo Said,Lozoya-Santos Jorge de-J.ORCID,Noriega José R.ORCID

Abstract

The present work describes the implementation of a prototype to characterize thermoelectric modules (TEM). The goal is to study the energy conversion by means of thermoelectric modules mounted on concrete structures. The proposed experimental system is used for the electrical characterization of a commercially available thermoelectric module TEC1-12710 to prove its operation while embedded in a concrete slab, typical of building constructions. In this case, the parameters that define thermal energy conversion into electrical energy are open-circuit voltage generation, loaded circuit voltage generation, and load current. A known external load is connected to the terminals of the TEM for the purpose of its electric characterization. An electrical heating element on the hot side and a thermoelectric cooler on the cold side produce a temperature difference on the concrete slab. This arrangement allows the emulation of a temperature gradient produced by sunlight over a concrete structure. The objective is to measure the resulting electrical energy produced by the combination of concrete slab and the thermoelectric module. By controlling the temperature difference between the sides of the thermoelectric module under test, it is possible to simulate the effect of the temperature gradient under different sunlight conditions. Two digital PI controllers regulate the temperature conditions, thus providing controlled conditions for the experiments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

1. Satellite Image Processing for Retrieving Historical Solar Irradiance Data within the Mexican Territory;Callejas-Cornejo,2019

2. SOLARGIS, WB, IFC, Global Solar Atlashttps://globalsolaratlas.info/?m=sg:ghi

3. Concentrated solar power technology in India: A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3