Kinetic Models of Disinfection with Sodium Hypochlorite and Peracetic Acid of Bacteria Isolated from the Effluent of a WWTP
Author:
Ocampo-Rodríguez Dulce Brigite1, Vázquez-Rodríguez Gabriela A.1ORCID, Rodríguez José Antonio1ORCID, González Sandoval María del Refugio2, Iturbe-Acosta Ulises3, Martínez Hernández Sylvia3ORCID, Coronel-Olivares Claudia1ORCID
Affiliation:
1. Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Hidalgo, Mexico 2. Área Académica de Ingeniería y Arquitectura, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Hidalgo, Mexico 3. Área Académica de Biología, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Hidalgo, Mexico
Abstract
The disinfection of wastewater is a treatment that allows for its reuse. However, not all pathogenic microorganisms or their resistant structures, e.g., endospores, cysts, or oocysts, are eliminated in conventional treatments. This work compared the removal efficacy of sodium hypochlorite (NaClO) and peracetic acid (PAA) on three strains of bacteria isolated from the tertiary effluent of a wastewater treatment plant. The results of the inactivation kinetics showed that complete inactivation of S. pasteuri was achieved with both NaClO (>12 log, t = 5–10 min, 15–30 mg/L) and PAA (~9 log, t = 20–30 min, 15 mg/L). Likewise, with higher concentration of both disinfectants, the inactivation time decreased. K. pneumoniae showed greater resistance to PAA (3 log, t = 30 min) than to NaClO (8 log, t = 15 min). B. subtilis endospores showed resistance to NaClO (3 log, t = 60–100 min, 15 mg/L); however, PAA was more effective (~4 log, t = 45–100 min), with 15 mg/L regarding these latter four kinetics. The inactivation curves of these strains showed concave and linear tendencies with tail effects, fitting the Weibull and Geeraerd models. Both the inactivation kinetics and the models established for vegetative cells and endospores in this study are conclusive to understand the differences between these biological forms and, consequently, their ability to survive disinfection.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference77 articles.
1. Collivignarelli, M.C., Abbá, A., Benigna, I., Sorlini, S., and Torretta, V. (2018). Overview of the main Disinfection Processes for Wastewater and Drinking water Treatment Plants. Sustainability, 10. 2. Collivignarelli, M.C., Abbá, A., Miino, M.C., Caccamo, F.F., Torretta, V., Rada, E.C., and Sorlini, S. (2021). Disinfection of wastewater by UV-Based Treatment for Reuse in a Circular Economy Perspective. Where are we at?. Int. J. Environ. Res. Public Health, 18. 3. DOF-Diario Oficial de la Federación (2023, May 11). Norma Oficial Mexicana NOM-001-SEMARNAT-2021, Que Establece Los Límites Permisibles de Contaminantes en Las Descargas de Aguas Residuales en Cuerpos Receptores Propiedad de la Nación. 11 de Marzo de 2022. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5645374&fecha=11/03/2022#gsc.tab=0. 4. Umar, M. (2022). From Conventional Disinfection to Antibiotic Resistance Control-Status of the Use of Chlorine and UV Irradiation during Wastewater Treatment. Int. J. Environ. Res. Public Health., 19. 5. Luongo, G., Previtera, L., Ladhari, A., Di Fabio, G., and Zarrelli, A. (2020). Peracetic acid vs. Sodium Hypochlorite: Degradation and Transformation of Drugs in Wastewater. Molecules., 25.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|