Abstract
The security of IoT networks is an important concern to researchers and business owners, which is taken into careful consideration due to its direct impact on the availability of the services offered by IoT devices and the privacy of the users connected with the network. An intrusion detection system ensures the security of the network and detects malicious activities attacking the network. In this study, a deep multi-layer classification approach for intrusion detection is proposed combining two stages of detection of the existence of an intrusion and the type of intrusion, along with an oversampling technique to ensure better quality of the classification results. Extensive experiments are made for different settings of the first stage and the second stage in addition to two different strategies for the oversampling technique. The experiments show that the best settings of the proposed approach include oversampling by the intrusion type identification label (ITI), 150 neurons for the Single-hidden Layer Feed-forward Neural Network (SLFN), and 2 layers and 150 neurons for LSTM. The results are compared to well-known classification techniques, which shows that the proposed technique outperforms the others in terms of the G-mean having the value of 78% compared to 75% for KNN and less than 50% for the other techniques.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献