Analytical and Preparative Separation of Softwood Lignans by Supercritical Fluid Chromatography

Author:

Ul’yanovskii Nikolay V.1ORCID,Onuchina Aleksandra A.1ORCID,Ovchinnikov Denis V.1,Faleva Anna V.1ORCID,Gorbova Natalia S.2,Kosyakov Dmitry S.1ORCID

Affiliation:

1. Laboratory of Natural Product Chemistry and Bioanalytics, Core Facility Center “Arktika”, Northern (Arctic) Federal University, Arkhangelsk 163002, Russia

2. Federal Center for Integrated Arctic Research, Arkhangelsk 163000, Russia

Abstract

Lignans are widespread polyphenolic secondary plant metabolites possessing high biological activity. One of the most promising industrial-scale sources of such compounds is coniferous knotwood, containing a large number of polyphenolic compounds. Their use in pharmaceutical and other industries is limited by the difficulty in obtaining high-purity preparations from plant material and the requirement of advanced separation techniques. In this study, supercritical fluid chromatography on polar stationary phases was proposed for the efficient separation and identification of spruce, pine, fir, and larch knotwood extractives. Among the six tested sorbents, the best results were shown by silica with grafted diol and 2-ethylpyridine groups under conditions of gradient elution with a carbon dioxide–methanol mobile phase, which ensured the efficient retention and separation of analytes due to donor–acceptor interactions. Scaling up the method on a DIOL stationary phase provided a semi-preparative separation of extractives within 30 min to obtain 14 individual compounds with a purity of 90–99% and yields from 0.3 to 51% of the dry extract. These included eight lignans (nortrachelogenin, matairesinol, oxomatairesinol, α-conidendrin, 5-hydroxymatairesinol and its isomer, lariciresinol, and secoisolariciresinol), two oligolignans, three stilbenes (pinosylvin and its methyl ester, pterostilbene), and flavonoid taxifolin. The developed approach is distinguished with low operational costs, low consumption of organic solvents, environmental safety, and it is fully consistent with the principles of green chemistry.

Funder

Russian Science Foundation and the Government of the Arkhangelsk Region

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3