The Effect of Molecular Mass of Hydroxyethyl Cellulose on the Performance of Capillary Electrophoretic Separation of Proteins

Author:

Huang Jiaxin,Tao Chunxian,Li ZhenqingORCID,Miyake Erika,You Qingxiang,Xiao Wen,Zhang Dawei,Yamaguchi Yoshinori

Abstract

Capillary electrophoresis (CE) is a versatile analytical separation method in the field of biochemistry. Although it has been proved that the relative molecular mass (Mr) of the polymers determines the threshold concentration of the entangled polymer solution, which will affect the separation performance of DNA molecules, there is still no report on the effect of Mr on the separation performance of proteins. Herein, we have thoroughly performed the CE of proteins ranged from 14.3 kDa to 116 kDa in a mixed hydroxyethyl cellulose (HEC) solution. The mixed solution was obtained with various Mr including 90,000, 250,000, 720,000, and 1,300,000. Then, we found that the mixed polymer provided a high resolution for small protein molecules while increasing the efficiency of large ones. Results demonstrated that the migration time decreased if HEC (1,300,000) was mixed with the lower Mr one, and the mixed solution (1,300,000/250,000) offered the highest resolution. The resolution was negatively correlated with the electric field strength. Finally, we have employed the optimal electrophoretic conditions to separate proteins in human tears, and it showed that lysozyme, lipocalin, and lactoferrin from human tears were successfully resolved in the mixed HEC. Such work indicates that CE has the potential to be developed as a tool for the diagnosis of xerophthalmia, meibomian gland dysfunction, or other eye diseases.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3