Utilization of Waste Biomaterial as an Efficient and Eco-Friendly Adsorbent for Solid-Phase Extraction of Pantoprazole Contaminants in Wastewater

Author:

Haq Nazrul1ORCID,Iqbal Muzaffar2ORCID,Hussain Afzal3ORCID,Shakeel Faiyaz1ORCID,Ahmad Ashfaq4ORCID,Alsarra Ibrahim A.1ORCID,AlAjmi Mohamed Fahad3,Mahfooz Asra5,Abouzadeh M. Ali6ORCID

Affiliation:

1. Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

2. Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

3. Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

4. Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

5. Department of Chemistry, S.S. Khanna Girls’ Degree College, University of Allahabad, Prayagraj 211003, Uttar Pradesh, India

6. CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, University Pau & Pays Adour, E2S UPPA, IPREM, UMR5254, 64000 Pau, France

Abstract

The objective of this analysis is to establish the potential of biodegradable agro-industrial waste materials as biosorbents in the solid-phase extraction (SPE) technique for sample preparation. In this regard, waste coffee husk (CH) powder was collected, washed, treated chemically, characterized, and applied as an SPE adsorbent to extract pantoprazole from the wastewater samples. Sample detection was accomplished using the UPLC-MS/MS system. The positive mode of electrospray ionization was exploited for the ionization of the sample, and quantification of the target analyte was performed by the multiple reaction monitoring modes. The precursor to product ion transition of 384.02→1380.05 and 384.02→200.05 was used as qualifiers and quantifiers, respectively. Optimization of the particle size, adsorbent dose, and contact time were evaluated to select the best combination of features. The efficiency and regeneration capability of the CH were compared with respect to a commercially available silica-based C18 SPE adsorbent, and it was found that CH possessed comparable (~50%) extraction, as well as regeneration capacity (~95%). The developed biosorbent was applied in a wastewater sample spiked with the target analyte and recovery studies were performed, which found a range of 93.0 to 102.0% with a %RSD of 3.72 to 12.7%. Thus, CH can be exploited as a ‘greener’ replacement for the commercially available adsorbents for the extraction/retention of active pharmaceutical ingredients present in water/wastewater samples.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3