Evaluation of Carbonized Corncobs for Removal of Microcystins and Nodularin-R from Water

Author:

Kiridena Hasaruwani S.1ORCID,Thenuwara Sharmila I.1,Kandage Manjula M.1ORCID,Peiffer Norman2,Marszewski Michal1,Isailovic Dragan1

Affiliation:

1. Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA

2. The Andersons, Maumee, OH 43537, USA

Abstract

Microcystins (MCs) and nodularins (NODs) are cyanotoxins that can be found in water bodies during cyanobacterial harmful algal blooms (cyanoHABs). Consumption of water contaminated with cyanotoxins leads to health risks for humans and animals. Herein, corncob-based biochar and activated carbon (AC) were initially investigated for the sorption of six common MC congeners (MC-RR, MC-YR, MC-LR, MC-LA, MC-LW, and MC-LF) and nodularin-R (NOD-R) from spiked water. Biochar was prepared by refluxing commercial corncob with HCl and heating it to 250, 300, or 350 °C. AC was prepared by chemical activation of corncob with H3PO4 at 500 °C under a nitrogen atmosphere. Low-temperature nitrogen adsorption measurements confirmed that H3PO4-AC has a higher specific surface area (≈1100 m2/g) and total pore volume (≈0.75 cm3/g) than biochar and commercial AC. H3PO4-AC showed the maximum efficacy, among all corncob-based sorbents, to remove MCs and NOD-R from water as confirmed by experiments that involved sample analyses by ultrahigh-pressure liquid chromatography-mass spectrometry (UHPLC-MS). The effect of natural organic matter (NOM) on the adsorption of MCs was checked by incubating sorbents with Lake Erie water collected during cyanoHABs from 2020 to 2022. The total concentration (extracellular and intracellular) of studied MC congeners ranged from 1.37 µg/L to 438.51 µg/L and 50 mg of H3PO4-AC completely removed them from 3 mL of lake water. The effect of water pH on cyanotoxin adsorption was studied at pH values of 5.5, 7.0, and 8.5 at both a lower (10 μg/L each) and a higher (50 μg/L each) toxin concentration. Removal was influenced by solution pH at both concentrations when using biochar, while only at higher toxin concentration when using H3PO4-AC. At higher MC and NOD-R concentrations, competitive adsorption was prominent, and overall, the adsorption increased at acidic pH (5.5). The study results suggest that processed corncobs can remove a significant amount of MCs and NOD-R from water, and the measured sorption capacity of H3PO4-AC was ~20 mg of MC-LR and NOD-R per g of this sorbent.

Funder

Ohio Department of Higher Education

Air Force Office of Scientific Research

Publisher

MDPI AG

Reference91 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3