Study on the Performance of Cellulose Triacetate Hollow Fiber Mixed Matrix Membrane Incorporated with Amine-Functionalized NH2-MIL-125(Ti) for CO2 and CH4 Separation

Author:

Sunder Naveen,Fong Yeong-Yin,Bustam Mohamad AzmiORCID,Lau Woei-JyeORCID

Abstract

The increase in the global population has caused an increment in energy demand, and therefore, energy production has to be maximized through various means including the burning of natural gas. However, the purification of natural gas has caused CO2 levels to increase. Hollow fiber membranes offer advantages over other carbon capture technologies mainly due to their large surface-to-volume ratio, smaller footprint, and higher energy efficiency. In this work, hollow fiber mixed matrix membranes (HFMMMs) were fabricated by utilizing cellulose triacetate (CTA) as the polymer and amine-functionalized metal-organic framework (NH2-MIL-125(Ti)) as the filler for CO2 and CH4 gas permeation. CTA and NH2-MIL-125(Ti) are known for exhibiting a high affinity towards CO2. In addition, the utilization of these components as membrane materials for CO2 and CH4 gas permeation is hardly found in the literature. In this work, NH2-MIL-125(Ti)/CTA HFMMMs were spun by varying the air gap ranging from 1 cm to 7 cm. The filler dispersion, crystallinity, and functional groups of the fabricated HFMMMs were examined using EDX mapping, SEM, XRD, and FTIR. From the gas permeation testing, it was found that the NH2-MIL-125(Ti)/CTA HFMMM spun at an air gap of 1 cm demonstrated a CO2/CH4 ideal gas selectivity of 6.87 and a CO2 permeability of 26.46 GPU.

Funder

Universiti Teknologi Petronas

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Reference67 articles.

1. International Agency Agency (IEA) (2022, October 11). Electricity Market Report—December 2020. Available online: https://www.iea.org/reports/electricity-market-report-december-2020.

2. Vega, F., Cano, M., Camino, S., Fernández, L.M.G., Portillo, E., and Navarrete, B. (2018). Carbon Dioxide Chemistry, Capture and Oil Recovery, IntechOpen.

3. Olivier, J.G.J., and Peters, J.A.H.W. (2020). Trends in Global CO2 and Total Greenhouse Gas Emissions, PBL Netherlands Environmental Assessment Agency.

4. Primoz, P. (2010). Natural Gas, IntechOpen.

5. Sukor, N.R., Shamsuddin, A.H., Mahlia, T.M.I., and Mat Isa, M.F. (2020). Techno-Economic Analysis of CO2 Capture Technologies in Offshore Natural Gas Field: Implications to Carbon Capture and Storage in Malaysia. Processes, 8.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3