Impact of Waste Tea Litter on NH3 and CO2 Emissions during Broiler Rearing

Author:

Jie Dengfei,Zhang Zhanxiang,He Jincheng,Zhou Yafang,Zhu Guangyou

Abstract

Pollution generated by livestock and poultry rearing is an important environmental issue, and gas emissions during animal production are continuously increasing. A digital rearing chamber inspection system was designed in the present study in order to examine the waste tea litter’s impact on the growth performance and harmful gas emissions, such as ammonia (NH3) and carbon dioxide (CO2), during broiler rearing. Broilers were raised without litter and with waste tea litter. According to the results, broiler growth showed little difference between the two groups during the experimental period, and it was concluded that waste tea litter had no impact on broiler growth. Meanwhile, the gas emissions of the waste tea-litter group were lower than the non-bedding-materials group. In detail, the average concentrations of NH3 and CO2 of the non-bedding-materials group were 9.33 ± 3.65 ppm and 797 ± 107 ppm, respectively; while these concentrations in the waste-tea-litter group were 1.01 ± 0.35 ppm and 713 ± 69 ppm, respectively. According to the analysis of the litter properties, it was suggested that waste tea litter can reduce the moisture content in litter, and affect microbial and urease activity due to its low carbon nitrogen ratio (C/N), weak acid, and porous structure characteristics. In conclusion, this study showed the potential of waste tea litter in NH3 and CO2 emission reduction during broiler rearing.

Funder

Fujian Provincial Natural Science Foundation Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Use of coffee husks – comparison of pellet bedding quality, performance features, and some welfare indicators of broiler chickens;BMC Veterinary Research;2023-10-02

2. Effect of various environmental enrichment on improve broiler growth performance, immunity parameters, and broiler leg health;PHYSICAL MESOMECHANICS OF CONDENSED MATTER: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3