The Properties and Durability of Self-Leveling and Thixotropic Mortars with Recycled Sand

Author:

Candamano Sebastiano,Tassone Francesco,Iacobini Ivan,Crea Fortunato,De Fazio Piero

Abstract

In recent decades, relevant environmental and economic reasons have driven an increasing interest in using a large amount of recycled aggregate in replacement of natural ones to produce mortar and concrete. The present study aims to investigate the effect of substituting 100% of natural sand with recycled aggregate on fresh properties, mechanical properties, and the durability of a thixotropic and a self-leveling mortar. Recycled aggregate was characterized using X-ray diffractometry and energy-dispersive X-ray spectroscopy. Its morphology was investigated using scanning electron microscopy and automated morphological imaging. Recycled aggregate mortars showed a moderate decline in initial workability, as well as higher shrinkage and porosity than the control ones. The compressive strength of self-leveling mortars produced with recycled aggregate was only 6% lower than mortars produced with natural sand. The gap increased to 40% in the case of thixotropic mortars. The self-leveling recycled aggregate mortar showed equivalent resistance to freeze–thaw cycles and better sulfate resistance than the control one. The thixotropic recycled aggregate mortar showed comparable sulphate resistance and only slightly lower resistance to freeze–thaw cycles than the control one. Their capacity to relief stresses, due to hydraulic pressures and the formation of expansive products, arises from their higher porosity. Thermal stability of the prepared mortars, after a curing period of 90 days, up to 700 °C, was also investigated. A significant decrease in ultrasonic pulse velocity is observed in the 200–400 °C interval for all the mortars, due to the dehydration–dehydroxylation of calcium silicate hydrate. The overall decline in the strength of both the recycled aggregate mortars was comparable to the control ones. The results reported in the present investigation suggest that the selection of high-quality recycled aggregate helps to obtain good-quality mortars when a large amount of natural sand is replaced.

Funder

Governo Italiano

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3