Empirical Analysis of IPv4 and IPv6 Networks through Dual-Stack Sites

Author:

Li Kwun-Hung,Wong Kin-YeungORCID

Abstract

IPv6 is the most recent version of the Internet Protocol (IP), which can solve the problem of IPv4 address exhaustion and allow the growth of the Internet (particularly in the era of the Internet of Things). IPv6 networks have been deployed for more than a decade, and the deployment is still growing every year. This empirical study was conducted from the perspective of end users to evaluate IPv6 and IPv4 performance by sending probing traffic to 1792 dual-stack sites around the world. Connectivity, packet loss, hop count, round-trip time (RTT), and throughput were used as performance metrics. The results show that, compared with IPv4, IPv6 has better connectivity, lower packet loss, and similar hop count. However, compared with IPv4, it has higher latency and lower throughput. We compared our results with previous studies conducted in 2004, 2007, and 2014 to investigate the improvement of IPv6 networks. The results of the past 16 years have shown that the connectivity of IPv6 has increased by 1–4%, and the IPv6 RTT (194.85 ms) has been greatly reduced, but it is still longer than IPv4 (163.72 ms). The throughput of IPv6 is still lower than that of IPv4.

Publisher

MDPI AG

Subject

Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Empirical Analysis of IPv4 and IPv6 Protocol Performance in End-user Environment;2024 47th MIPRO ICT and Electronics Convention (MIPRO);2024-05-20

2. Statistical behavioral characteristics of network communication delay in IPv4/IPv6 Internet;Telecommunication Systems;2024-02-28

3. IPv4 Routing over IPv6 Routing Data Plane Using SRv6;Proceedings of the 8th International Conference on Sustainable Information Engineering and Technology;2023-10-24

4. IPv6 Security Issues: A Systematic Review Following PRISMA Guidelines;Baghdad Science Journal;2022-12-05

5. Testbed for the Comparative Analysis of DS-Lite and Lightweight 4over6 IPv6 Transition Technologies;2022 45th International Conference on Telecommunications and Signal Processing (TSP);2022-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3