Abstract
Quasi-static or cyclic loading of an artificial starter crack in unidirectionally fibre-reinforced composite test coupons yields fracture mechanics data—the toughness or strain-energy release rate (labelled G)—for characterising delamination initiation and propagation. Thus far, the reproducibility of these tests is typically between 10 and 20%. However, differences in the size and possibly the shape, but also in the fibre lay-up, between test coupons and components or structures raise additional questions: Is G from a coupon test a suitable parameter for describing the behaviour of delaminations in composite structures? Can planar, two-dimensional, delamination propagation in composite plates or shells be properly predicted from essentially one-dimensional propagation in coupons? How does fibre bridging in unidirectionally reinforced test coupons relate to delamination propagation in multidirectional lay-ups of components and structures? How can multiple, localised delaminations—often created by impact in composite structures—and their interaction under service loads with constant or variable amplitudes be accounted for? Does planar delamination propagation depend on laminate thickness, thickness variation or the overall shape of the structure? How does exposure to different, variable service environments affect delamination initiation and propagation? Is the microscopic and mesoscopic morphology of FRP composite structures sufficiently understood for accurate predictive modelling and simulation of delamination behaviour? This contribution will examine selected issues and discuss the consequences for test development and analysis. The discussion indicates that current coupon testing and analysis are unlikely to provide the data for reliable long-term predictions of delamination behaviour in FRP composite structures. The attempts to make the building block design methodology for composite structures more efficient via combinations of experiments and related modelling look promising, but models require input data with low scatter and, even more importantly, insight into the physics of the microscopic damage processes yielding delamination initiation and propagation.
Subject
General Materials Science
Reference142 articles.
1. A Status Report on Delamination Resistance Testing of Polymer-Matrix Composites;Brunner;Eng. Fract. Mech.,2008
2. Interlaminar Fracture Toughness Characterization of Laminated Composites: A Review;Shrivastava;Polym. Rev.,2020
3. A Review of Factors that Influence the Fracture Toughness of Extrusion-Based Additively Manufactured Polymer and Polymer Composites;Sharafi;Addit. Manuf.,2021
4. Delamination Growth in Polymer-Matrix Fibre Composites and the Use of Fracture Mechanics Data for Material Characterisation and Life Prediction;Jones;Compos. Struct.,2017
5. Murri, G.B., O’Brien, T.K., and Rousseau, C.Q. (May, January 29). Fatigue life methodology for tapered Composite flexbeam laminates. Proceedings of the American Helicopter Society 53rd Annual Forum, Virginia Beach, VA, USA.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献