In-Service Delaminations in FRP Structures under Operational Loading Conditions: Are Current Fracture Testing and Analysis on Coupons Sufficient for Capturing the Essential Effects for Reliable Predictions?

Author:

Brunner Andreas J.,Alderliesten René,Pascoe John-AlanORCID

Abstract

Quasi-static or cyclic loading of an artificial starter crack in unidirectionally fibre-reinforced composite test coupons yields fracture mechanics data—the toughness or strain-energy release rate (labelled G)—for characterising delamination initiation and propagation. Thus far, the reproducibility of these tests is typically between 10 and 20%. However, differences in the size and possibly the shape, but also in the fibre lay-up, between test coupons and components or structures raise additional questions: Is G from a coupon test a suitable parameter for describing the behaviour of delaminations in composite structures? Can planar, two-dimensional, delamination propagation in composite plates or shells be properly predicted from essentially one-dimensional propagation in coupons? How does fibre bridging in unidirectionally reinforced test coupons relate to delamination propagation in multidirectional lay-ups of components and structures? How can multiple, localised delaminations—often created by impact in composite structures—and their interaction under service loads with constant or variable amplitudes be accounted for? Does planar delamination propagation depend on laminate thickness, thickness variation or the overall shape of the structure? How does exposure to different, variable service environments affect delamination initiation and propagation? Is the microscopic and mesoscopic morphology of FRP composite structures sufficiently understood for accurate predictive modelling and simulation of delamination behaviour? This contribution will examine selected issues and discuss the consequences for test development and analysis. The discussion indicates that current coupon testing and analysis are unlikely to provide the data for reliable long-term predictions of delamination behaviour in FRP composite structures. The attempts to make the building block design methodology for composite structures more efficient via combinations of experiments and related modelling look promising, but models require input data with low scatter and, even more importantly, insight into the physics of the microscopic damage processes yielding delamination initiation and propagation.

Publisher

MDPI AG

Subject

General Materials Science

Reference142 articles.

1. A Status Report on Delamination Resistance Testing of Polymer-Matrix Composites;Brunner;Eng. Fract. Mech.,2008

2. Interlaminar Fracture Toughness Characterization of Laminated Composites: A Review;Shrivastava;Polym. Rev.,2020

3. A Review of Factors that Influence the Fracture Toughness of Extrusion-Based Additively Manufactured Polymer and Polymer Composites;Sharafi;Addit. Manuf.,2021

4. Delamination Growth in Polymer-Matrix Fibre Composites and the Use of Fracture Mechanics Data for Material Characterisation and Life Prediction;Jones;Compos. Struct.,2017

5. Murri, G.B., O’Brien, T.K., and Rousseau, C.Q. (May, January 29). Fatigue life methodology for tapered Composite flexbeam laminates. Proceedings of the American Helicopter Society 53rd Annual Forum, Virginia Beach, VA, USA.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3