Tribological Properties of WS2 Thin Films Containing Graphite-like Carbon and Ni Interlayers

Author:

Romanov Roman I.,Fominski Dmitry V.,Demin Maxim V.,Gritskevich Mariya D.,Doroshina Natalia V.,Volkov Valentyn S.ORCID,Fominski Vyacheslav Yu.ORCID

Abstract

The development and production of thin-film coatings having very low friction is an urgent problem of materials science. One of the most promising solutions is the fabrication of special nanocomposites containing transition-metal dichalcogenides and various carbon-based nanophases. This study aims to explore the influence of graphite-like carbon (g-C) and Ni interface layers on the tribological properties of thin WS2 films. Nanocrystalline WS2 films were created by reactive pulsed laser deposition (PLD) in H2S at 500 °C. Between the two WS2 nanolayers, g-C and Ni nanofilms were fabricated by PLD at 700 and 22 °C, respectively. Tribotesting was carried out in a nitrogen-enriched atmosphere by the reciprocal sliding of a steel counterbody under a relatively low load of 1 N. For single-layer WS2 films, the friction coefficient was ~0.04. The application of g-C films did not noticeably improve the tribological properties of WS2-based films. However, the application of thin films of g-C and Ni reduced the friction coefficient to 0.013, thus, approaching superlubricity. The island morphology of the Ni nanofilm ensured WS2 retention and altered the contact area between the counterbody and the film surface. The catalytic properties of nickel facilitated the introduction of S and H atoms into g-C. The sliding of WS2 nanoplates against an amorphous g-C(S, H) nanolayer caused a lower coefficient of friction than the relative sliding of WS2 nanoplates. The detected behavior of the prepared thin films suggests a new strategy of designing antifriction coatings for practical applications and highlights the ample opportunities of laser techniques in the formation of promising thin-film coatings.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3