Mordenite-Supported Ag+-Cu2+-Zn2+ Trimetallic System: A Variety of Nanospecies Obtained via Thermal Reduction in Hydrogen Followed by Cooling in an Air or Hydrogen Atmosphere

Author:

Rodríguez-Iznaga InocenteORCID,Petranovskii VitaliiORCID,Castillón-Barraza Felipe F.,Fuentes-Moyado Sergio,Chávez-Rivas FernandoORCID,Pestryakov AlexeyORCID

Abstract

Multimetallic systems, instead of monometallic systems, have been used to develop materials with diverse supported species to improve their catalytic, antimicrobial activity, etc., properties. The changes in the types of nanospecies obtained through the thermal reduction of ternary Ag+-Cu2+-Zn2+/mordenite systems in hydrogen, followed by their cooling in an air or hydrogen atmosphere, were studied. Such combinations of trimetallic systems with different metal content, variable ratios (between them), and alternating atmosphere types (during the cooling after reducing the samples in hydrogen at 350 °C) lead to diversity in the obtained copper and silver nanospecies. No reduction of Zn2+ was evidenced. A low silver content leads to the formation of reduced silver clusters, while the formation of nanoparticles of a bigger size takes place in the trimetallic samples with high silver content. The cooling of the reduced trimetallic samples in the air causes the oxidation of the obtained metallic clusters and silver and copper nanoparticles. In the case of copper, such conditions lead to the formation of mainly copper (II) oxide, while the silver nanospecies are converted mainly into clusters and nanoparticles. The zinc cations provoked changes in the mordenite matrix, which was associated with the formation of point oxygen defects in the mordenite structure and the formation of surface zinc oxide sub-nanoparticles in the samples cooled in the air.

Funder

DGAPA-PAPIIT

CONACYT

Sevastopol State University Research

Programa de Estancias de Investigación (PREI)-2022 de la DGAPA, UNAM, México

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3