How Sustainable Is People’s Travel to Reach Public Transit Stations to Go to Work? A Machine Learning Approach to Reveal Complex Relationships

Author:

Tang Panyu,Aghaabbasi MahdiORCID,Ali MujahidORCID,Jan AminORCID,Mohamed Abdeliazim MustafaORCID,Mohamed Abdullah

Abstract

Several previous studies examined the variables of public-transit-related walking and privately owned vehicles (POVs) to go to work. However, most studies neglect the possible non-linear relationships between these variables and other potential variables. Using the 2017 U.S. National Household Travel Survey, we employ the Bayesian Network algorithm to evaluate the non-linear and interaction impacts of health condition attributes, work trip attributes, work attributes, and individual and household attributes on walking and privately owned vehicles to reach public transit stations to go to work in California. The authors found that the trip time to public transit stations is the most important factor in individuals’ walking decision to reach public transit stations. Additionally, it was found that this factor was mediated by population density. For the POV model, the population density was identified as the most important factor and was mediated by travel time to work. These findings suggest that encouraging individuals to walk to public transit stations to go to work in California may be accomplished by adopting planning practices that support dense urban growth and, as a result, reduce trip times to transit stations.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3