Advances in Portable Heavy Metal Ion Sensors

Author:

Hu Tao1,Lai Qingteng1,Fan Wen1,Zhang Yanke1,Liu Zhengchun1ORCID

Affiliation:

1. Department of Electronics, School of Physics and Electronics, Central South University, Changsha 410083, China

Abstract

Heavy metal ions, one of the major pollutants in the environment, exhibit non-degradable and bio-chain accumulation characteristics, seriously damage the environment, and threaten human health. Traditional heavy metal ion detection methods often require complex and expensive instruments, professional operation, tedious sample preparation, high requirements for laboratory conditions, and operator professionalism, and they cannot be widely used in the field for real-time and rapid detection. Therefore, developing portable, highly sensitive, selective, and economical sensors is necessary for the detection of toxic metal ions in the field. This paper presents portable sensing based on optical and electrochemical methods for the in situ detection of trace heavy metal ions. Progress in research on portable sensor devices based on fluorescence, colorimetric, portable surface Raman enhancement, plasmon resonance, and various electrical parameter analysis principles is highlighted, and the characteristics of the detection limits, linear detection ranges, and stability of the various sensing methods are analyzed. Accordingly, this review provides a reference for the design of portable heavy metal ion sensing.

Funder

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent nanomaterials for electrochemical detection of heavy metals;Smart Nanomaterials for Environmental Applications;2025

2. Biosensing meets click chemistry: A promising combination for analysis of food hazard factors;Coordination Chemistry Reviews;2024-12

3. Advances in nanohydrolase-based pollutant sensing;Trends in Environmental Analytical Chemistry;2024-09

4. Strategies for preparation of chitosan based water-soluble fluorescent probes to detect Cr3+ and Cu2+ ions;International Journal of Biological Macromolecules;2024-09

5. Biopolymer-CMTG and m-BPDM Based Hydrogel Composite for Promising Sensing of Zinc, Cadmium, and Mercury in Aqueous Medium;Journal of Inorganic and Organometallic Polymers and Materials;2024-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3