Sulfide Trace Element Signatures and S- and Pb-Isotope Geochemistry of Porphyry Copper and Epithermal Gold-Base Metal Mineralization in the Elatsite–Chelopech Ore Field (Bulgaria)

Author:

Stefanova Elitsa1,Georgiev Stoyan1,Peytcheva Irena1,Marchev Peter1,von Quadt Albrecht2,Raicheva Raya1,Gerdjikov Ianko3ORCID,Kouzmanov Kalin4,Boyce Adrian5,Vennemann Torsten6

Affiliation:

1. Bulgarian Academy of Sciences, Geological Institute “Strashimir Dimitrov”, 1113 Sofia, Bulgaria

2. Department of Earth Sciences, ETH Zurich, 8092 Zurich, Switzerland

3. Department of Geology, Paleontology and Fossil Fuels, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria

4. Department of Earth Sciences, University of Geneva, CH-1205 Geneva, Switzerland

5. Scottish Universities Environmental Research Centre, University of Glasgow, Rankine Avenue, East Kilbride G75 OQF, UK

6. Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland

Abstract

The Elatsite–Chelopech ore field in the northern part of the Panagyurishte district in Central Bulgaria comprises numerous spatially associated porphyry copper and epithermal gold deposits and prospects. In addition to the mineralization and alteration features, trace elements, lead and sulfur isotope signatures of sulfide minerals from porphyry copper, base metal and gold-base metal deposits/prospects have been studied. LA-ICP-MS analyses of pyrite, arsenopyrite and sulfosalt minerals validate them as major carriers for Au, Ag, Sb, Se and Co. Pyrite from the three types of mineralization has specific geochemical characteristics. Pyrite from the porphyry copper deposits/prospects has generally lower total trace element content compared to pyrite from the epithermal prospects, except for Se, Co and Ni. Pyrite from the base metal and gold-base metal veins is enriched in As, Au, Ag, Sb and Pb. In pyrite from the base metal deposits, Co and Ni have contents comparable to the pyrite from the porphyry copper deposits, while pyrite from the gold-base metal veins shows lower Co and Ni. Arsenopyrite from these deposits shows similar features. Similarly, sphalerite from the gold-base metal veins also has lower Co content compared to sphalerite from the base metal veins but higher In and Cu contents. In addition to the close spatial relationships between the Elatsite and Gorna Kamenitsa porphyry Cu deposits and Negarstitsa-West and Dolna Kamenitsa base metal prospects, as well as similarities in the mineralization and alteration styles, the lead isotopic (206Pb/204Pb = 18.61–18.68, 207Pb/204Pb = 15.64–15.65 for porphyry and 206Pb/204Pb = 18.55–18.67, 207Pb/204Pb = 15.64–15.68 for base metal) and sulfur isotopic (δ34S values of −3 to +1‰ for porphyry and δ34S values of −1.7 to +3.5‰ for base metal) signatures of sulfides support the idea of a genetic link between these two types of deposits. The porphyry and base-metal mineralization result from a common major ore-forming event during the Late Cretaceous, corresponding to deep/higher-temperature and shallower/distal/lower-temperature environments, respectively. In particular, more radiogenic lead (206Pb/204Pb = 18.41–18.47, 207Pb/204Pb = 15.67–15.76) and slightly different sulfur isotopic compositions (δ34S values of +3.5 to +10.6‰) of sulfides from the distal gold-base metal veins of Kordunsko Dere, Svishti Plaz and Shipkite might be a consequence of the interaction of the ore-forming fluids with an external older crustal and isotopically positive S source. Alternatively, a different fluid source/event for the formation of these gold-base metal veins may be suggested.

Funder

Bulgarian National Science Fund

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3