A Global-Ocean-Data Assimilation for Operational Oceanography

Author:

Qin Yinghao12,Yu Qinglong12,Wan Liying12,Liu Yang12,Mo Huier12,Wang Yi12,Meng Sujing12,Wu Xiangyu12,Sui Dandan3,Xie Jiping4

Affiliation:

1. National Marine Environmental Forecasting Center (NMEFC), Beijing 100081, China

2. Key Laboratory of Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Beijing 100081, China

3. South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences (CAS), Guangzhou 510301, China

4. Nansen Environmental and Remote Sensing Center (NERSC), 5007 Bergen, Norway

Abstract

In this study, a global-ocean-data-assimilation system based on the three-dimensional variational (3DVAR) scheme is built for operational oceanography. The available observations include satellite altimetry; the satellite-measured sea-surface temperature (SST); and T/S profiles from Argo floats, which are assimilated to provide the initial condition of the global-ocean forecasting. The statistical analysis methods are designed to assess the performance of the data-assimilation scheme, and the results show that the analysis SST fields agree well with OSTIA and MGDSST, and the corresponding root-mean-square errors are, respectively, 0.523 and 0.548 °C. Moreover, the analysis sea-surface-height fields are well represented at the middle and low latitudes and have a slightly greater difference in the regions with strong mesoscale eddies. The variations in the vertical distribution of the forecasting temperature profiles resemble those of the GTS buoy observation. The forecasting salinity profiles correspond well to GTS observations, except with a weaker cold bias between the depths 100 and 200 m (about 0.2 PSU) at buoy station 2901494. Overall, our 3DVAR assimilation system plays a significant role in improving the accuracy of analysis and forecasting fields for operational oceanography.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference41 articles.

1. Extreme weather and climate;Tippett;npj Clim. Atmos. Sci.,2018

2. Operational multivariate ocean data assimilation;Cummings;Q. J. R. Meteorol. Soc.,2005

3. Metzger, E.J., Smedstad, O.M., Thoppil, P., Hurlburt, H.E., Wallcraft, A.J., Franklin, D.S., Shriver, J.F., and Smedstad, L.F. (2023, November 23). Validation Test Report for the Global Ocean Prediction System V3.0—1/12° HYCOM/NCODA: Phase I. NRL Memorandum Report NRL/MR/7320—08-9148. Available online: http://www7320.nrlssc.navy.mil/pubs/2008/metzger-2008.pdf.

4. Metzger, E.J., Smedstad, O.M., Thoppil, P., Hurlburt, H.E., Franklin, D.S., Peggion, G., Shriver, J.F., Townsend, T.L., and Wallcraft, A.J. (2023, November 23). Validation Test Report for the Global Ocean Forecast System V3.0— 1/12° HYCOM/NCODA: Phase II. NRL Memorandum Report NRL/MR/7320—10-9236. Available online: http://www7320.nrlssc.navy.mil/pubs/2010/metzger1-2010.pdf.

5. US Navy operational global ocean and Arctic ice prediction systems;Smedstad;Oceanography,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3