Research on Method of Collision Avoidance Planning for UUV Based on Deep Reinforcement Learning

Author:

Gao Wei1,Han Mengxue2,Wang Zhao1ORCID,Deng Lihui3,Wang Hongjian1ORCID,Ren Jingfei1

Affiliation:

1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China

2. AVIC China Aero-Polytechnology Establishment, Beijing 100028, China

3. Tianjin Navigation and Instrument Institute, Tianjin 300130, China

Abstract

A UUV can perform tasks such as underwater surveillance, reconnaissance, surveillance, and tracking by being equipped with sensors and different task modules. Due to the complex underwater environment, the UUV must have good collision avoidance planning algorithms to avoid various underwater obstacles when performing tasks. The existing path planning algorithms take a long time to plan and have poor adaptability to the environment. Some collision-avoidance planning algorithms do not take into account the kinematic limitations of the UUV, thus placing high demands on the performance and control algorithms of UUV. This article proposes a PPO−DWA collision avoidance planning algorithm for the UUV under static unknown obstacles, which is based on the proximal policy optimization (PPO) algorithm and the dynamic window approach (DWA). This algorithm acquires the obstacle information from forward-looking sonar as input and outputs the corresponding continuous actions. The PPO−DWA collision avoidance planning algorithm consists of the PPO algorithm and the modified DWA. The PPO collision avoidance planning algorithm is only responsible for outputting the continuous angular velocity, aiming to reduce the difficulty of training neural networks. The modified DWA acquires obstacle information and the optimal angular velocity from the PPO algorithm as input, and outputs of the linear velocity. The collision avoidance actions output by this algorithm meet the kinematic constraints of UUV, and the algorithm execution time is relatively short. The experimental data demonstrates that the PPO−DWA algorithm can effectively plan smooth collision-free paths in complex obstacle environments, and the execution time of the algorithm is acceptable.

Funder

National Science and Technology Innovation Special Zone Project

National Key Laboratory of Underwater Robot Technology Fund

a special program to guide high-level scientific research

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Obstacle Avoidance Strategy for AUV Based on State-Tracking Collision Detection and Improved Artificial Potential Field;Journal of Marine Science and Engineering;2024-04-23

2. A Navigation Method for UUVs under Ocean Current Disturbance Based on Deep Reinforcement Learning;2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE);2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3