Valve Stiction Detection Method Based on Dynamic Slow Feature Analysis and Hurst Exponent

Author:

Shang Linyuan1ORCID,Zhang Yuyu1,Zhang Hanyuan1

Affiliation:

1. School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China

Abstract

Valve stiction is the most common root of oscillation faults in process control systems, and it can cause the severe deterioration of control performance and system instability, ultimately impacting product quality and process safety. A new method for detecting valve stiction, based on dynamic slow feature analysis (DSFA) and the Hurst exponent, is proposed in this paper. The proposed method first utilizes DSFA to extract slow features (SFs) from the preprocessed and reconstructed data of the controller output and the controlled process variable; then, it calculates the Hurst exponent of the slowest SF to quantify its long-term correlation; and, finally, it defines a new valve detection index to identify valve stiction. The results obtained from simulations and actual process case studies demonstrate that the proposed method, based on a DSFA–Hurst exponent, can effectively detect valve stiction in control loops.

Funder

Youth Innovation Team Technology Project of the Higher School in Shandong Province

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3