Quasi-Static and Dynamic Tensile Behavior of Water-Bearing Sandstone Subjected to Microwave Irradiation

Author:

Wang PinORCID,Yin Tubing,Li Xibing,Konietzky Heinz

Abstract

Microwave irradiation on rocks before excavation is an effective method to reduce equipment wear and energy consumption during mechanical cutting. Rock mass excavation is usually carried out in a water-rich environment and exposed to dynamic loads, thus understanding the coupled effects of water content and loading rate on the mechanical behavior of rocks under microwave radiation is essential. In this study, sandstone samples with five levels of water content (from oven-dried to water-saturated) were exposed to microwave irradiation at a power of 700 W for 10 min. Brazilian disc tests were conducted on sandstone samples after microwave radiation under both quasi-static and dynamic loading conditions. Test results revealed that, with the increase of the initial water content, the microwave heating capacity of the rock is significantly improved. The surface temperature of the saturated samples is approximately 1.38 times higher than that of the dry ones. Moreover, weight, P-wave velocity, quasi-static and dynamic tensile strength of the rock decrease, while porosity and damage factor exhibit a similar growth law. Before microwave irradiation, the average value of the P-wave velocity and the quasi-static tensile strength of sandstone were about 2521.3 m·s−1 and 4.65 MPa. However, after microwave treatment, when the initial water content was 2%, 3%, 4% and 5.4%, the P-wave velocity decreased by 6.1%, 9.8%, 16.4% and 30.2%, while that quasi-static tensile strength reduced by 9.2%, 16.7%, 30.6% and 48.9%, respectively. For water-saturated samples under microwave irradiation, the porosity increases from 13.02% to 18.12% (showing an increase of 39.2%), and the damage value rises to 0.51. In addition, the dynamic tensile strength shows a significant loading rate dependence, and as the initial water content increases, also the dynamic increase factor (DIF) increases. At a given loading rate, the energy dissipation decreases with the increase of the initial water content, which indicates that the presence of water cause more significant damage to the rock when subjected to microwave radiation. Scanning electron microscopy (SEM) results indicate that the internal damage of the rock after microwave radiation is dominated by intergranular cracks, and crack density increases with increasing initial water content of the samples. The underlying damage mechanisms of microwave radiation on water-bearing sandstone were interpreted with the theory of pore water pressure and structural thermal stresses.

Funder

Xibing Li

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference75 articles.

1. Preliminary study for induced fracture and non-explosive continuous mining in high-geostress hard rock mine—A case study of Kaiyang phosphate mine;Li;Chin. J. Rock Mech. Eng.,2013

2. Experimental study of slabbing and rockburst induced by true-triaxial unloading and local dynamic disturbance;Du;Rock Mech. Rock Eng.,2016

3. Design optimization of TBM disc cutters for different geological conditions;Xia;World J. Eng. Technol.,2015

4. Performance prediction of hard rock Tunnel Boring Machines (TBMs) in difficult ground;Rostami;Tunn. Undergr. Space Technol.,2016

5. Improvement of disc cutter performance by water jet assistance;Ciccu;Rock Mech. Rock Eng.,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3