Modeling and Optimal Supervisory Control of Networked Discrete-Event Systems and Their Application in Traffic Management

Author:

Hou YunfengORCID,Shen Yanni,Li Qingdu,Ji YunfengORCID,Li Wei

Abstract

In this paper, we investigate the modeling and control of networked discrete-event systems (DESs), where a supervisor is connected to the plant via an observation channel and the control commands issued by the supervisor are delivered to the actuator of the plant via a control channel. Communication delays exist in both the observation channel and the control channel. First, a novel modeling framework for the supervisory control of DESs subject to observation delays and control delays is presented. The framework explicitly models the interaction process between the plant and the supervisor over the communication channels. Compared with the previous work, a more accurate “dynamics” of the closed-loop system is specified. Under this framework, we further discuss how to estimate the states of the closed-loop system in the presence of observation delays and control delays. Based on the state estimation, we synthesize an optimal supervisor on the fly to maximize the controlled behaviors while preventing the system from leaving the desired behaviors under communication delays. We compare the proposed supervisor with the supervisor proposed in the literature and show that the proposed supervisor is more permissive. As an application, we show how the proposed approach can be applied to manage vehicles in a signal intersection. Finally, we show how to extend the proposed framework to model a system whose actuators and sensors are distributed at different sites.

Funder

National Natural Science Foundation of China

Pujiang Talents Plan of Shanghai

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3