Association of GHR Polymorphisms with Milk Production in Buffaloes

Author:

El-Komy Shymaa M.,Saleh Ayman A.,Abdel-Hamid Tamer M.,El-Magd Mohammed A.ORCID

Abstract

For its role in the mediation of growth hormone (GH) galactopoietic effect, growth hormone receptor (GHR) was considered a functional candidate gene for milk performance in cattle. However, its genetic variation and potential effect have not been investigated in Egyptian buffaloes. This study aimed to screen GHR for polymorphisms and study their associations with milk traits in Egyptian buffaloes. Polymerase chain reaction, single-strand conformation polymorphism, and sequencing were used to identify mutations in 4 exons (E4–E6 and E8) of the GHR gene in 400 Egyptian buffaloes. No polymorphisms were found in E4, while 2 SNPs (c.380G>A/p.Arg127Lys and c.387C>T/p.Gly129) in E5, one silent mutation (c.435A>G/p.Pro145) in E6, and another missense mutation (c.836T>A/p.Phe279Tyr) in E8 were detected. The c.380G>A SNP in the extracellular domain was associated with milk yield, fat %, protein %, and 305-day milk, fat and protein yield, with higher levels in animals carrying the mutant A allele. The c.836T>A SNP in the transmembrane domain was associated with milk yield, fat %, protein %, and 305-day milk, fat and protein yield, with higher milk yield and lower fat %, protein %, fat and protein yield in the mutant A allele-animals. Interestingly, animals with the two mutant AA alleles produced higher milk yield, fat %, protein %, fat and protein yield, accompanied with upregulated expressions of GHR, GH, insulin-like growth factor 1 (IGF1), prolactin (PRL), prolactin receptor (PRLR), β-casein (encoded by CSN2 gene), and diacylglycerol acyltransferase-1 (DGAT1) genes and proteins in milk somatic cells. Therefore, selection of Egyptian buffaloes with mutant AA haplotypes for the novel c.380G>A SNP and the well-known c.836T>A SNP could improve milk yield and quality in buffaloes.

Funder

Science and Technology Development Fund

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3