Assessing Many Image Processing Products Retrieved from Sentinel-2 Data to Monitor Shallow Landslides in Agricultural Environments

Author:

Cavalli Rosa Maria1ORCID,Pisano Luca2ORCID,Fiorucci Federica1,Ardizzone Francesca1

Affiliation:

1. Research Institute for Geo-Hydrological Protection (IRPI), National Research Council (CNR), 06128 Perugia, Italy

2. Research Institute for Geo-Hydrological Protection (IRPI), National Research Council (CNR), 87030 Rende, Italy

Abstract

Remote images are useful tools for detecting and monitoring landslides, including shallow landslides in agricultural environments. However, the use of non-commercial satellite images to detect the latter is limited because their spatial resolution is often comparable to or greater than landslide sizes, and the spectral characteristics of the pixels within the landslide body (LPs) are often comparable to those of the surrounding pixels (SPs). The buried archaeological remains are also often characterized by sizes that are comparable to image spatial resolutions and the spectral characteristics of the pixels overlying them (OBARPs) are often comparable to those of the pixels surrounding them (SBARPs). Despite these limitations, satellite images have been used successfully to detect many buried archaeological remains since the late 19th century. In this research context, some methodologies, which examined the values of OBARPs and SBARPs, were developed to rank images according to their capability to detect them. Based on these previous works, this paper presents an updated methodology to detect shallow landslides in agricultural environments. Sentinel-2 and Google Earth (GE) images were utilized to test and validate the methodology. The landslides were mapped using GE images acquired simultaneously or nearly simultaneously with the Sentinel-2 data. A total of 52 reference data were identified by monitoring 14 landslides over time. Since remote sensing indices are widely used to detect landslides, 20 indices were retrieved from Sentinel-2 images to evaluate their capability to detect shallow landslides. The frequency distributions of LPs and SPs were examined, and their differences were evaluated. The results demonstrated that each index could detect shallow landslides with sizes comparable to or smaller than the spatial resolution of Sentinel-2 data. However, the overall accuracy values of the indices varied from 1 to 0.56 and two indices (SAVI and RDVI) achieved overall accuracy values equal to 1. Therefore, to effectively distinguish areas where shallow landslides are present from those where they are absent, it is recommended to apply the methodology to many image processing products. In conclusion, given the significant impact of these landslides on agricultural activity and surrounding infrastructures, this methodology provides a valuable tool for detecting and monitoring landslide presence in such environments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3