A Fire Reconnaissance Robot Based on SLAM Position, Thermal Imaging Technologies, and AR Display

Author:

Li ,Feng ,Niu ,Shi ,Wu ,Song

Abstract

Due to hot toxic smoke and unknown risks under fire conditions, detection and relevant reconnaissance are significant in avoiding casualties. A fire reconnaissance robot was therefore developed to assist in the problem by offering important fire information to fire fighters. The robot consists of three main systems, a display operating system, video surveillance, and mapping and positioning navigation. Augmented reality (AR) goggle technology with a display operating system was also developed to free fire fighters’ hands, which enables them to focus on rescuing processes and not system operation. Considering smoke disturbance, a thermal imaging video surveillance system was included to extract information from the complicated fire conditions. Meanwhile, a simultaneous localization and mapping (SLAM) technology was adopted to build the map, together with the help of a mapping and positioning navigation system. This can provide a real-time map under the rapidly changing fire conditions to guide the fire fighters to the fire sources or the trapped occupants. Based on our experiments, it was found that all the tested system components work quite well under the fire conditions, while the video surveillance system produces clear images under dense smoke and a high-temperature environment; SLAM shows a high accuracy with an average error of less than 3.43%; the positioning accuracy error is 0.31 m; and the maximum error for the navigation system is 3.48%. The developed fire reconnaissance robot can provide a practically important platform to improve fire rescue efficiency to reduce the fire casualties of fire fighters.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HSC: a multi-hierarchy descriptor for loop closure detection in overhead occlusion scenes;Complex & Intelligent Systems;2024-08-05

2. Reliable Autonomous Reconnaissance System for a Tracked Robot in Multi-floor Indoor Environments with Stairs;Journal of Korea Robotics Society;2024-05-31

3. VAPOR: Legged Robot Navigation in Unstructured Outdoor Environments using Offline Reinforcement Learning;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

4. A method to accelerate the rescue of fire-stricken victims;Expert Systems with Applications;2024-03

5. Artificial Intelligence based Wheeled Fire Fighting Robot with A Fire Extinguishing, Ball-Shooting Turret for Forest Areas;2024 International Conference on Social and Sustainable Innovations in Technology and Engineering (SASI-ITE);2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3