Influence of Pre-Tension on Free-End Torsion Behavior and Mechanical Properties of an Extruded Magnesium Alloy

Author:

Chen Hongbing1,Shen Zhikang1,Song Bo2ORCID,She Jia3

Affiliation:

1. College of Engineering and Technology, Southwest University, Chongqing 400715, China

2. School of Materials and Energy, Southwest University, Chongqing 400715, China

3. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China

Abstract

In this study, the influence of pre-tension on free-end torsion behavior and compression mechanical properties and micro-hardness of an extruded AZ31 Mg alloy was investigated using electron backscatter diffraction (EBSD), compression testing and micro-hardness testing. The result indicates that pre-tension can cause significant dislocation strengthening, which can increase the torsion yield strength and make the shear stress–shear strain curve of the pre-tension sample almost parallel to that of the as-extruded sample during plastic deformation stage. Texture in edge position on the cross-section of both the pre-tension and as-extruded samples can be rotated towards the extrusion direction by about ~30° by free-end torsion. The Swift effect is mainly responsible for the occurrence of massive extension twins in the central region. In contrast, normal stress is the main cause of extension twins occurring in the edge region. However, the effect of extension twins on micro-hardness is less than that of dislocations. The micro-hardness of both free-end torsion specimens increases almost linearly with increasing distance from center to edge on the cross-section. Nevertheless, the increase in micro-hardness of the pre-tension and then torsion sample is inconspicuous because pre-tension leads to dislocation proliferation and dislocation accumulation saturation. The result also indicates that both pre-tension and free-end torsion can lead to dislocation strengthening, which can obviously increase the micro-hardness and compressive yield stress. The underlying mechanisms were explored and discussed in detail.

Funder

Natural Science Foundation of Chongqing, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3