Anti-Corrosion Flocking Surface with Enhanced Wettability and Evaporation

Author:

Lu Die1,Ni Jing1ORCID,Zhang Zhen1,Feng Kai2

Affiliation:

1. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

2. School of Mechanical and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract

The corrosion protection of tool steel surfaces is of significant importance for ensuring cutting precision and cost savings. However, conventional surface protection measures usually rely on toxic organic solvents, posing threats to the environment and human health. In this regard, an integrated process of laser texturing and electrostatic flocking is introduced as a green anti-corrosion method on a high-speed steel (HSS) surface. Drawing from the principles of textured surface energy barrier reduction and fiber array capillary water evaporation enhancement, a flocking surface with a synergistic optimization of surface wettability and evaporation performance was achieved. Then, contact corrosion tests using 0.1 mol/L of NaCl droplets were performed. Contact angles representing wettability and change in droplet mass representing evaporation properties were collected. The elements and chemical bonds presented on the corroded surfaces were characterized by X-ray photoelectron spectroscopy (XPS). The results revealed that the flocking surface exhibited the lowest degree of corrosion when compared with smooth and textured surfaces. Corrosion resistance of the flocking surface was achieved through the rapid spread and evaporation of droplets, which reduced the reaction time and mitigated electrochemical corrosion. This innovative flocking surface holds promise as an effective treatment in anti-corrosion strategies for cutting tools.

Funder

National Key Research and Development Program ‘High-performance Manufacturing Technology and Major Equipment’ Specific Project

Zhejiang Provincial Natural Science Foundation of China

Project of the National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3