Assessment of Microstructural Features of a Silchrome 1 Exhaust Valve of a Harley-Davidson WLA World War II Motorcycle

Author:

Růžička Jan12ORCID,Alıcıoğlu Ali3,Bouquerel Jérémie2ORCID,Novák Pavel1ORCID,Vogt Jean-Bernard2ORCID

Affiliation:

1. Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic

2. Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207—UMET—Unité Matériaux et Transformations, F-59000 Lille, France

3. Department of Materials Engineering, TUM School of Engineering and Design, Technical University of Munich, 85748 Munich, Germany

Abstract

The paper aims at documenting the material employed in 1942 for the fabrication of an exhaust valve for a Harley-Davidson WLA/WLC motorcycle and assesses the material features with modern steel standard specifications and treatment. Facing properties of the original historical parts of technical heritage objects according to modern standards is a rare discipline, as these objects are nowadays in collections of museums or private collectors and experimental instrumental analyses are strictly forbidden. In this case, a preserved accessible unused surplus replacement kit was studied. The microstructure was assessed by light optical and scanning electron microscopy, electron probe micro-analysis and by heat treatment–hardness correlation. It was found that the valve was made of Silchrome 1 steel in coherence with the X45CrSi9-3 steel modern material standard, but with a slightly higher content of phosphorus and sulfur. Microscopic observations and hardness profile testing suggested a tempered martensitic structure (sorbite) with very fine grains uniformly distributed in the valve and an even heat treatment. Heat treatment–hardness experimentation demonstrated that the original heat treatment cannot be achieved by the modern standard procedure. The tempering temperature was surprisingly deduced to be lower than the recommended one according to the modern standard, which contrasts with the service temperature indicated in the contemporary motorcycle mechanics handbook.

Funder

UCT Prague

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3