Activated Carbon for CO2 Adsorption from Avocado Seeds Activated with NaOH: The Significance of the Production Method

Author:

Siemak Joanna1,Mikołajczak Grzegorz2,Pol-Szyszko Magdalena3,Michalkiewicz Beata1ORCID

Affiliation:

1. Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland

2. Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, 26 Kwietnia St. 10, 71-126 Szczecin, Poland

3. Department of Plant Genetics, Breeding and Biotechnology, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, 17 Słowackiego Str., 71-434 Szczecin, Poland

Abstract

The rise in atmospheric greenhouse gases like CO2 is a primary driver of global warming. Human actions are the primary factor behind the surge in CO2 levels, contributing to two-thirds of the greenhouse effect over the past decade. This study focuses on the chemical activation of avocado seeds with sodium hydroxide (NaOH). The influence of various preparation methods was studied under the same parameters: carbon precursor to NaOH mass ratio, carbonization temperature, and nitrogen flow. For two samples, preliminary thermal treatment was applied (500 °C). NaOH was used in the form of a saturated solution as well as dry NaOH. The same temperature of 850 °C of carbonization combined with chemical activation was applied for all samples. The applied modifications resulted in the following textural parameters: specific surface area from 696 to 1217 m2/g, total pore volume from 0.440 to 0.761 cm3/g, micropore volume from 0.159 to 0.418 cm3/g. The textural parameters were estimated based on nitrogen sorption at −196 °C. The XRD measurements and SEM pictures were also performed. CO2 adsorption was performed at temperatures of 0, 10, 20, and 30 °C and pressure up to 1 bar. In order to calculate the CO2 selectivity over N2 nitrogen adsorption at 20 °C was investigated. The highest CO2 adsorption (4.90 mmol/g) at 1 bar and 0 °C was achieved.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3