Extended Polysaccharide Analysis within the Liposomal Encapsulation of Polysaccharides System

Author:

Nayerhoda RoozbehORCID,Park Dongwon,Jones Charles,Bou Ghanem Elsa N.,Pfeifer Blaine A.ORCID

Abstract

The Liposomal Encapsulation of Polysaccharides (LEPS) dual antigen vaccine carrier system was assessed across two distinct polysaccharides for encapsulation efficiency, subsequent liposomal surface adornment with protein, adjuvant addition, and size and charge metrics. The polysaccharides derive from two different serotypes of Streptococcus pneumoniae and have traditionally served as the active ingredients of vaccines against pneumococcal disease. The LEPS system was designed to mimic glycoconjugate vaccines that covalently couple polysaccharides to protein carriers; however, the LEPS system uses a noncovalent co-localization mechanism through protein liposomal surface attachment. In an effort to more thoroughly characterize the LEPS system across individual vaccine components and thus support broader future utility, polysaccharides from S. pneumoniae serotypes 3 and 4 were systematically compared within the LEPS framework both pre- and post-surface protein attachment. For both polysaccharides, ≥85% encapsulation efficiency was achieved prior to protein surface attachment. Upon protein attachment with either a model protein (GFP) or a pneumococcal disease antigen (PncO), polysaccharide encapsulation was maintained at ≥61% encapsulation efficiency. Final LEPS carriers were also evaluated with and without alum as an included adjuvant, with encapsulation efficiency maintained at ≥30%, while protein surface attachment efficiency was maintained at ≥~50%. Finally, similar trends and distributions were observed across the different polysaccharides when assessed for liposomal zeta potential and size.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3