3D Finite Element Model on Drilling of CFRP with Numerical Optimization and Experimental Validation

Author:

Hale PatrickORCID,Ng Eu-Gene

Abstract

When drilling Carbon Fibre-Reinforced Plastic (CFRP) materials, achieving acceptable hole quality is challenging while balancing productivity and tool wear. Numerical models are important tools for the optimization of drilling CFRP materials in terms of material removal rate and hole quality. In this research, a macro-Finite Element (FE) model was developed to accurately predict the effect of drill tip geometry on hole entry and exit quality. The macro-mechanical material model was developed treating the Fiber-Reinforced Plastic (FRP) as an Equivalent Homogeneous Material (EHM). To reduce computational time, a numerical analysis was performed to investigate the influence of mass scaling, bulk viscosity, friction, strain rate strengthening, and cohesive surface modelling. A consideration must be made to minimize the dynamic effects in the FE prediction. The experimental work was carried out to investigate the effect of drill tip geometry on drilling forces and hole quality and to validate the FE results. The geometry of the drills used were either double-point angle or a “candle-stick” profile. The 3D drilling model accurately predicts the thrust force and hole quality generated by the two different drills. The results highlight the improvement in predicted results with the inclusion of cohesive surface modelling. The force signature profiles between the simulated and experimental results were similar. Furthermore, the difference between the predicted thrust force and those measured were less than 9%. When drilling with a double-angle drill tip, the inter-ply damage was reduced. This trend was observed in FE prediction.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3