GSS-RiskAsser: A Multi-Modal Deep-Learning Framework for Urban Gas Supply System Risk Assessment on Business Users

Author:

Li Xuefei,Song Liangtu,Liu LiuORCID,Zhou Linli

Abstract

Gas supply system risk assessment is a serious and important problem in cities. Existing methods tend to manually build mathematical models to predict risk value from single-modal information, i.e., pipeline parameters. In this paper, we attempt to consider this problem from a deep-learning perspective and define a novel task, Urban Gas Supply System Risk Assessment (GSS-RA). To drive deep-learning techniques into this task, we collect and build a domain-specific dataset GSS-20K containing multi-modal data. Accompanying the dataset, we design a new deep-learning framework named GSS-RiskAsser to learn risk prediction. In our method, we design a parallel-transformers Vision Embedding Transformer (VET) and Score Matrix Transformer (SMT) to process multi-modal information, and then propose a Multi-Modal Fusion (MMF) module to fuse the features with a cross-attention mechanism. Experiments show that GSS-RiskAsser could work well on GSS-RA task and facilitate practical applications. Our data and code will be made publicly available.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integration of fuzzy reliability analysis and consequence simulation to conduct risk assessment;Journal of Loss Prevention in the Process Industries;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3