The Coordinated KNR6–AGAP–ARF1 Complex Modulates Vegetative and Reproductive Traits by Participating in Vesicle Trafficking in Maize

Author:

Li ManfeiORCID,Zhao Ran,Du Yanfang,Shen Xiaomeng,Ning Qiang,Li Yunfu,Liu Dan,Xiong Qing,Zhang Zuxin

Abstract

The KERNEL NUMBER PER ROW6 (KNR6)-mediated phosphorylation of an adenosine diphosphate ribosylation factor (Arf) GTPase-activating protein (AGAP) forms a key regulatory module for the numbers of spikelets and kernels in the ear inflorescences of maize (Zea mays L.). However, the action mechanism of the KNR6–AGAP module remains poorly understood. Here, we characterized the AGAP-recruited complex and its roles in maize cellular physiology and agronomically important traits. AGAP and its two interacting Arf GTPase1 (ARF1) members preferentially localized to the Golgi apparatus. The loss-of-function AGAP mutant produced by CRISPR/Cas9 resulted in defective Golgi apparatus with thin and compact cisternae, together with delayed internalization and repressed vesicle agglomeration, leading to defective inflorescences and roots, and dwarfed plants with small leaves. The weak agap mutant was phenotypically similar to knr6, showing short ears with fewer kernels. AGAP interacted with KNR6, and a double mutant produced shorter inflorescence meristems and mature ears than the single agap and knr6 mutants. We hypothesized that the coordinated KNR6–AGAP–ARF1 complex modulates vegetative and reproductive traits by participating in vesicle trafficking in maize. Our findings provide a novel mechanistic insight into the regulation of inflorescence development, and ear length and kernel number, in maize.

Funder

the National Natural Science Foundation of China

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3