Vertical Diamond p-n Junction Diode with Step Edge Termination Structure Designed by Simulation

Author:

Cai Guangshuo1,Mu Caoyuan2,Li Jiaosheng1,Li Liuan2ORCID,Cheng Shaoheng2,Wang Qiliang2,Han Xiaobiao3

Affiliation:

1. School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China

2. State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China

3. Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei 230093, China

Abstract

In this paper, diamond-based vertical p-n junction diodes with step edge termination are investigated using a Silvaco simulation (Version 5.0.10.R). Compared with the conventional p-n junction diode without termination, the step edge termination shows weak influences on the forward characteristics and helps to suppress the electric field crowding. However, the breakdown voltage of the diode with simple step edge termination is still lower than that of the ideal parallel-plane one. To further enhance the breakdown voltage, we combine a p-n junction-based junction termination extension on the step edge termination. After optimizing the structure parameters of the device, the depletion regions formed by the junction termination extension overlap with that of the p-n junction on the top mesa, resulting in a more uniform electric field distribution and higher device performance.

Funder

Basic and Applied Basic Research Foundation of Guangzhou

Start-Up Funding of Guangdong Polytechnic Normal University

Guangdong Province University Characteristic Innovation Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Vertical Diamond Diodes with Trench Structure towards High Performances;2023 20th China International Forum on Solid State Lighting & 2023 9th International Forum on Wide Bandgap Semiconductors (SSLCHINA: IFWS);2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3