The Formation and Stability of HA–Fe/Mn Colloids in Saturated Porous Media

Author:

Zheng Junhao1,Jiang Mei1,Li Qingzhu12,Yang Weichun12

Affiliation:

1. School of Metallurgy and Environment, Central South University, Changsha 410083, China

2. Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China

Abstract

Fe/Mn (hydr)oxides are metallic compounds that exhibit significant redox activity in environmental media and play a pivotal role in geochemical processes, thereby influencing the fate of metals in porous media. The morphology of Fe/Mn (hydr)oxides in natural environments and their interactions with trace metals are significantly influenced by the presence of natural organic matter (NOM). However, there is limited understanding regarding the formation, transport, and stability of Fe/Mn (hydr)oxides in the environment. The present study employed humic acid (HA) as a representative NOM material to investigate the positive influence of HA on the formation of Fe/Mn colloids. However, there remains limited comprehension regarding the formation, transport, and stability of Fe/Mn (hydr)oxides in the natural environment. In this study, we investigated the positive effect of natural organic matter (NOM) on the formation of Fe/Mn colloids using humic acid (HA) as a representative NOM material. We comprehensively characterized the chemical and physical properties of HA–Fe/Mn colloids formed under various environmentally relevant conditions and quantitatively analyzed their subsequent aggregation and stability behaviors. The findings suggest that the molar ratios of C to Fe/Mn (hydr)oxide play a pivotal role in influencing the properties of HA–Fe/Mn colloids. The formation and stability of HA–Fe/Mn colloids exhibit an upward trend with increasing initial molar ratios of C to Fe/Mn. Redox and metal–carboxylic acid complexation reactions between HA and hydrated iron/manganese oxides play a pivotal role in forming colloidal HA–Fe/Mn complexes. Subsequent investigations simulating porous media environments have demonstrated that the colloidal structure resulting from the interaction between HA and Fe/Mn facilitates their migration within surrounding porous media while also enhancing their retention in the surface layers of these media. This study offers novel insights into the formation and stabilization mechanisms of HA–Fe/Mn colloids, which are pivotal for comprehending the behavior of Fe/Mn colloids and the involvement of Fe/Mn (hydr)oxides in geochemical cycling processes within porous media.

Funder

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

National Natural Science Foundation of China

Key Research and Development Project of the Power Construction Corporation of China

Hunan Provincial Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3