Nickel and Chromium Origin in Fluvisols of the Petruševec Well Field, Zagreb Aquifer

Author:

Ružičić StankoORCID,Balaž Borna-IvanORCID,Kovač ZoranORCID,Filipović LanaORCID,Nakić Zoran,Kopić Jasna

Abstract

Soil plays an important role in the accumulation and transport of potentially toxic elements (PTEs), from surface into aquifer. PTEs can get to the environment naturally, but also from different kinds of contamination sources. In this study, a soil profile located in the vicinity of well field Petruševec, one of the most important well fields related to the public water supply of the City of Zagreb, was analyzed. The main aim of this study was to determine soil properties which can influence retention/mobilization of Ni and Cr in alluvial soil, as well as to define their origin in the investigated soil profile. Results suggest that Cr is geogenic, while Ni is probably of dominantly anthropogenic origin. Observed concentrations, enrichment factors and Igeo values showed no enrichment for Cr, while for Ni, they showed minor to very severe enrichment, i.e., that in some soil horizons, moderate to strong pollution exists. Evaluation of wind directions and location of possible contamination sources that prevail in the study area suggest that Ni can come by aerodeposition from different sources. Results showed that mineral composition can have important influence on retention of analyzed PTEs. Soil horizons, which have very high concentrations of Ni, in general have higher proportion of clay minerals, especially chlorites, as well as Fe oxyhydroxides which can act as an adsorption phase for the investigated PTEs. Results suggest that more detailed research about the investigated PTEs presents a necessity if measures for soil and groundwater protection want to be effectively implemented.

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3