Synthesis and Comprehensive Study of Quaternary-Ammonium-Based Sorbents for Natural Gas Sweetening

Author:

Atlaskina Maria E.ORCID,Atlaskin Artem A.ORCID,Kazarina Olga V.ORCID,Petukhov Anton N.ORCID,Zarubin Dmitriy M.ORCID,Nyuchev Alexander V.,Vorotyntsev Andrey V.ORCID,Vorotyntsev Ilya V.

Abstract

The present study provides a solvent-free organic synthesis of quaternary ammonium salts: bis(2-hydroxyethyl)dimethylammonium taurate ([BHEDMA][Tau]) and bis(2-hydroxyethyl)dimethylammonium acetate ([BHEDMA][OAc]). These ionic compounds are promising materials for carbon dioxide capture processes, as mono sorbents, supplemental components in the conventional process of chemical absorption, and in the combined membrane approach for improving sorption efficiency. The synthesized compounds were characterized by 1H NMR and FT-IR spectroscopies and elemental analysis. Afterward, the sorption properties of the compounds were evaluated using the inverse gas chromatography (IGC) method, and their thermodynamic parameters were calculated in the temperature range of 303.15–333.15 K. The enthalpy change (∆sH) was less than 80 kJ·mol−1, indicated by the physical nature of sorption and also proved by FT-IR. Henry’s law constant in regard to carbon dioxide at 303.15 K was equal to 4.76 MPa for [BHEDMA][Tau], being almost 2.5 lower than for [BHEDMA][OAc] (11.55 MPa). The calculated carbon dioxide sorption capacity for [BHEDMA][Tau] and [BHEDMA][OAc] amounted to 0.58 and 0.30 mmol·g−1, respectively. The obtained parameters are comparable with the known solid sorbents and ionic liquids used for CO2 capture. However, the synthesized compounds, combining the advantages of both alkanolamines and ionic liquids, contain no fluorine in their structure and thus match the principles of environmental care.

Funder

Russian Foundation for Basic Research

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3