Assessing Energy-Based CO2 Emission and Workers’ Health Risks at the Shipbreaking Industries in Bangladesh

Author:

Mitra Nandita,Shahriar Shihab AhmadORCID,Lovely Nurunnaher,Khan Md Shohel,Rak Aweng Eh,Kar S. P.,Khaleque Md Abdul,Amin Mohamad Faiz Mohd,Kayes Imrul,Salam Mohammed AbdusORCID

Abstract

The study represents the estimation of energy-based CO2 emission and the health risks of workers involved in the shipbreaking industries in Sitakunda, Bangladesh. To calculate the carbon emission (CE) from three shipbreaking activities, i.e., metal gas cutting (GC), diesel fuel (FU) and electricity consumption (EC), we used the Intergovernmental Panel on Climate Change (IPCC) guidelines and Environmental Protection Agency (EPA)’s Emission and Generation Resource Integrated Database (eGRID) emission factors. Moreover, the geographic weighted regression (GWR) model was applied to assess the contribution of influencing factors of CE throughout the sampling points. To assess the workers’ health condition and their perceptions on environmental degradation, a semi-structured questionnaire survey among 118 respondents were performed. The results showed that total CO2 emissions from GC were 0.12 megatons (MT), 11.43 MT, and 41.39 MT for daily, monthly, and yearly respectively, and the values were significantly higher than the surrounding control area. Emissions from the FU were estimated as daily: 0.85 MT, monthly: 1.92 MT, and yearly: 17.91 MT, which were significantly higher than EC. The study also revealed that workers were very susceptible to accidental hazards especially death (91%), and pollution (79%). Environmental consequences and health risks of the workers in shipbreaking industry warrant more attention nationally and internationally at the industry-level.

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3