Review of Techniques for the Removal of Polycyclic Aromatic Hydrocarbons from Produced Water

Author:

Sher Sadaf1,Waseem Muhammad2,Leta Megersa Kebede3ORCID

Affiliation:

1. U.S. Pakistan Center for Advanced Studies in Water, Mehran University of Engineering & Technology, Jamshoro 76062, Pakistan

2. Department of Civil Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan

3. Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany

Abstract

Polycyclic aromatic hydrocarbons (PAHs), due to their mutagenic, carcinogenic, and teratogenic potential, can lead to numerous chronic and fatal diseases. PAHs have been found in several wastewater streams, including “produced water,” which is wastewater generated during the extraction of oil and gas. The PAHs’ removal from produced water using physical, chemical, biological, and combined methods is crucial. Water is a vital ecosystem component and is extremely vulnerable to PAHs. This article reviews the current PAH situation, including their physical and chemical properties, types, characteristics, and removal methods from produced water. The mechanism of each method of removal of PAHs has been discussed. The current study results show that adsorption by nanoparticles and integrated methods are promising methods to meet the strict authoritarian limit with advanced increase potential in the direction of commercialization for the removal of PAHs and provide opportunities to use produced water as a source of water. The current study results can help the policy/decision makers in the efficient management of water resources.

Funder

Deutsche Forschungsgemeinschaft

the Open Access Publication Fund of the University of Rostock

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3