Effect of Soil Aging on Cadmium Bioavailability and Bioaccessibility at a Contaminated Site

Author:

Petruzzelli Gianniantonio1,Barbafieri Meri1,Franchi Elisabetta2ORCID,Fusini Danilo2ORCID,Vocciante Marco3ORCID,Pedron Francesca1

Affiliation:

1. Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy

2. Eni S.p.A., R&D Environmental & Biological Laboratories, Via Maritano 26, 20097 San Donato Milanese, Italy

3. Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy

Abstract

The effect of aging on cadmium (Cd) bioavailability and bioaccessibility was investigated in naturally aged field soil within a contaminated site. The results, which are based on a comparison of investigations carried out in 2018 and 2022 on the same soil samples, provide a realistic evaluation of the variation in Cd chemical forms due to long-term aging. The data obtained show a significant reduction (from approximately 30% to 60%) in the mobile and bioavailable forms of cadmium, while the total quantity in soil did not change significantly. The effect of aging on the bioavailable fractions is also reflected in the reduction in the amount of the metal absorbed by plants. On the one hand, this indicates a reduction in the potential contamination of the food chain, while on the other, it highlights the limitations of the use of phytoextraction as a clean-up technology in this specific site. In the case under study, it should also be noted that there was no decrease in cadmium bioaccessibility over time, which remained very high even after four years of cadmium aging in the soil, which was about 60% of the total content in the most contaminated soil samples. This highlights the potential health risks related to the incidental ingestion of Cd-contaminated soil, which could become the main exposure route in the case of the final use of the site as a park or public green area.

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3