Abstract
This paper proposes an algorithm that improves ship detection accuracy using preprocessing and post-processing. To achieve this, high-resolution electro-optical satellite images with a wide range of shape and texture information were considered. The developed algorithms display the problem of unreliable detection of ships owing to clouds, large waves, weather influences, and shadows from large terrains. False detections in land areas with image information similar to that of ships are observed frequently. Therefore, this study involves three algorithms: global feature enhancement pre-processing (GFEP), multiclass ship detector (MSD), and false detected ship exclusion by sea land segmentation image (FDSESI). First, GFEP enhances the image contrast of high-resolution electro-optical satellite images. Second, the MSD extracts many primary ship candidates. Third, falsely detected ships in the land region are excluded using the mask image that divides the sea and land. A series of experiments was performed using the proposed method on a database of 1984 images. The database includes five ship classes. Therefore, a method focused on improving the accuracy of various ships is proposed. The results show a mean average precision (mAP) improvement from 50.55% to 63.39% compared with other deep learning-based detection algorithms.
Funder
National Research Foundation of Korea
Ministry of Education
Ministry of Science and ICT
Korea Institute of Energy Technology Evaluation and Planning
Korea Institute of Industrial Technology
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献