Vehicle Trajectory-Prediction Method Based on Driver Behavior-Classification and Informer Models

Author:

Su Jianyu1,Li Muyang1,Zhu Langqian1,Zhang Sijia123,Liu Mingjian123

Affiliation:

1. College of Information Engineering, Dalian Ocean University, Dalian 116023, China

2. Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian 116023, China

3. Dalian Key Laboratory of Smart Fisheries, Dalian 116023, China

Abstract

In order to improve the accuracy of vehicle trajectories and ensure driving safety, and considering the differences in driver behavior and the impact of these differences on vehicle trajectories, a vehicle trajectory-prediction method (DBC-Informer) based on the categorization of driver behavior is proposed: firstly, the characteristic driver feature data are extracted through data preprocessing; secondly, descriptive statistical data are obtained through the classification of the driver’s behavior into categories; finally, based on the Informer model, a two-layer driver category trajectory-prediction network architecture is established, which inputs the vehicle trajectories of different driving types into independent prediction sub-networks, respectively, to realize the accurate prediction of vehicle trajectories. The experimental results show that the MAE and MSE values of trajectory prediction of the DBC-Informer model in different time domains are much smaller than those of other comparative models, and the improvement of accuracy is more obvious in the long-term domain trajectory-prediction task scenario, and the increase in prediction error of the DBC-Informer model is significantly reduced after the prediction time exceeds 1 s. The on-line behavioral categorization is achieved by comparing different categorization models; it reaches 98% in classification accuracy and, according to the results of ablation experiments, the addition of the driver behavior-classification method to the prediction model improves the accuracy of prediction in longitudinal and lateral motion by 56% and 61%, respectively, which verifies the effectiveness of the driver behavior-classification method. It can be seen that the DBC-Informer model can more accurately portray the effects of different driving behaviors on vehicle trajectories and improve the accuracy of vehicle trajectory prediction, which provides important data support for vehicle warning systems.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3