Production and Characterization of a Novel Biosurfactant Molecule from Bacillus safensis YKS2 and Assessment of Its Efficiencies in Wastewater Treatment by a Directed Metagenomic Approach

Author:

Kalaimurugan DharmanORCID,Balamuralikrishnan BalasubramanianORCID,Govindarajan Rasiravathanahalli KaveriyappanORCID,Al-Dhabi Naif Abdullah,Valan Arasu Mariadhas,Vadivalagan ChithravelORCID,Venkatesan Srinivasan,Kamyab HesamORCID,Chelliapan ShreeshivadasanORCID,Khanongnuch ChartchaiORCID

Abstract

Biosurfactant is a biodegradation accelerator that improves bioavailability and facilitates degradation by microorganisms. The study was meant to produce a novel biosurfactant molecule from Bacillussafensis YKS2. An efficient biosurfactant-producing strain, namely, Bacillus safensis YKS2, was selected using hemolytic activity, drop collapsing test, oil spreading test and blue agar plate methods in four oil-degrading strains isolated from a soil sample. Biosurfactant production in the optimization of bacteria culture conditions by RSM is a statistical grouping technique that is analyzed using the AVOVA approach to surface tention. In addition, the study was characterized by UV spectrophotometer FT-IR, HR-SEM, and GC-MS analyses to explain its structural and chemical details. Wastewater treatment was monitored for pH, EC, turbidity, alkalinity, chemical oxygen demand (COD), biochemical oxygen demand (BOD) and dissolved oxygen (DO) in order to justify the efficacy of the biosurfactant during wastewater treatment. The results of the UV spectrophotometer showed absorption at 530 nm, and the FT-IR analyzed carboxylic acids, alcohol and phenols groups, whichthe GC-MS analysis indicated were lipopeptide purified by hexadecanoic andtetradecanoic processes, respectively. The results show that the wastewater removal efficiency of 70% wasachieved within 24 h. In comparison, metagenomics was conducted during the treatment process to identify changes in the microbial load and diversity, which essentially indicatethe biosurfactant performance of the wastewater treatment process. The microbial load in the treated biosurfactant wastewater (84,374 sequences) was greatly decreased compared to untreated wastewater (139,568 sequences). It was concluded that B. safensis YKS2, producing a glycolipid form of biosurfactant, has possible benefits in the remediation of wastewater, and can be used for large-scale processing inbiosurfactant industries.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3