Enhancement of Ultrasonic Transducer Bandwidth by Acoustic Impedance Gradient Matching Layer

Author:

Zhu Ke,Ma Jinpeng,Qi Xudong,Shen Bingzhong,Liu Yang,Sun Enwei,Zhang Rui

Abstract

High-performance broadband ultrasound transducers provide superior imaging quality in biomedical ultrasound imaging. However, a matching design that perfectly transmits the acoustic energy between the active piezoelectric element and the target medium over the operating spectrum is still lacking. In this work, an anisotropic gradient acoustic impedance composite material as the matching layer of an ultrasonic transducer was designed and fabricated; it is a non-uniform material with the continuous decline of acoustic impedance along the direction of ultrasonic propagation in a sub-wavelength range. This material provides a broadband window for ultrasonic propagation in a wide frequency range and achieves almost perfect sound energy transfer efficiency from the piezoelectric material to the target medium. Nano tungsten particles and epoxy resin were selected as filling and basic materials, respectively. Along the direction of ultrasonic propagation, the proportion of tungsten powder was carefully controlled to decrease gradually, following the natural exponential form in a very narrow thickness range. Using this new material as a matching layer with high-performance single crystals, the −6 dB bandwidth of the PMN-PT ultrasonic transducer could reach over 170%, and the insertion loss was only −20.3 dB. The transducer achieved a temporal signal close to a single wavelength, thus there is the potential to dramatically improve the resolution and imaging quality of the biomedical ultrasound imaging system.

Funder

the National Natural Science Foundation of China

Heilongjiang Touyan Innovation Team Program

Medical Engineering (Science) cross research fund of Harbin Institute of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3