Exploring the Relationship between Urban Vibrancy and Built Environment Using Multi-Source Data: Case Study in Munich

Author:

Gao Chao12ORCID,Li Shasha3,Sun Maopeng4,Zhao Xiyang5,Liu Dewen6ORCID

Affiliation:

1. College of Transportation Engineering, Chang’an University, Xi’an 710061, China

2. School of Engineering and Design, Technical University of Munich, 80333 Munich, Germany

3. School of Humanities, Chang’an University, Xi’an 710061, China

4. Shenzhen Urban Transport Planning Centre Co., Ltd., Shenzhen 518000, China

5. School of Economics and Management, Chang’an University, Xi’an 710064, China

6. School of Management, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Abstract

Urbanization has profoundly reshaped the patterns and forms of modern urban landscapes. Understanding how urban transportation and mobility are affected by spatial planning is vital. Urban vibrancy, as a crucial metric for monitoring urban development, contributes to data-driven planning and sustainable growth. However, empirical studies on the relationship between urban vibrancy and the built environment in European cities remain limited, lacking consensus on the contribution of the built environment. This study employs Munich as a case study, utilizing night-time light, housing prices, social media, points of interest (POIs), and NDVI data to measure various aspects of urban vibrancy while constructing a comprehensive assessment framework. Firstly, the spatial distribution patterns and spatial correlation of various types of urban vibrancy are revealed. Concurrently, based on the 5Ds built environment indicator system, the multi-dimensional influence on urban vibrancy is investigated. Subsequently, the Geodetector model explores the heterogeneity between built environment indicators and comprehensive vibrancy along with its economic, social, cultural, and environmental dimensions, elucidating their influence mechanism. The results show the following: (1) The comprehensive vibrancy in Munich exhibits a pronounced uneven distribution, with a higher vibrancy in central and western areas and lower vibrancy in northern and western areas. High-vibrancy areas are concentrated along major roads and metro lines located in commercial and educational centers. (2) Among multiple models, the geographically weighted regression (GWR) model demonstrates the highest explanatory efficacy on the relationship between the built environment and vibrancy. (3) Economic, social, and comprehensive vibrancy are significantly influenced by the built environment, with substantial positive effects from the POI density, building density, and road intersection density, while mixed land use shows little impact. (4) Interactions among built environment factors significantly impact comprehensive vibrancy, with synergistic interactions among the population density, building density, and POI density generating positive effects. These findings provide valuable insights for optimizing the resource allocation and functional layout in Munich, emphasizing the complex spatiotemporal relationship between the built environment and urban vibrancy while offering crucial guidance for planning.

Funder

National Natural Science Foundation of China

China Scholarship Council

Jiangsu Social Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3